

Dept of Advanced Computing PhD Entrance Examination-23 Syllabus

Units	Syllabus Details
Unit-1 Database Management Systems	<ul style="list-style-type: none">Database System Concepts and Architecture: Schemas, Data Models and Instances; Three-Schema Architecture and Data Independence.Data Modeling: Relational Model - Constraints, Entity-Relationship Diagram, Design, Languages, and Programming.SQL: Data Definition and Data Types; Queries, Constraints, Delete, Insert and Update Statements.Normalization for Relational Databases: Normalization; Algorithms for Query Processing & Optimization and Functional Dependencies.Data Warehousing and Data Mining: Concept Hierarchy, Data Modeling for Data Warehouses, OLAP and OLTP.Big Data Systems: Introduction to Map-Reduce, Big Data Characteristics, Types of Big Data, Big Data Architecture and Hadoop.
Unit-2 Machine Learning	<ul style="list-style-type: none">Introduction to Machine Learning (ML) - Essential concepts of ML – Types of learning –Machine learning methods based on Time – Dimensionality – Linearity and Non linearity – Early trends in Machine learning – Data Understanding Representation and visualization.Machine Learning Methods- Linear methods – Regression - Classification –Perceptron and Neural networks – Decision trees – Support vector machines – Probabilistic models —Unsupervised learning – FeaturizationMachine Learning for Predictive Data Analytics – Data to Insights to Decisions – Data Exploration – Information based Learning – Similarity based learning – Probability based learning – Error based learning – Evaluation – The art of Machine learning to Predictive Data Analytics.

Unit-3 Artificial Intelligence (AI)	<ul style="list-style-type: none"> • Approaches to AI: State Space Representation of Problems; Turing Test and Rational Agent Approaches. • Knowledge Representation: Frames, Logic, Semantic Networks, Scripts, Rules, Conceptual Dependency and Ontologies. • Multi-Agent Systems: Agents and Objects; Generic Structure of Multiagent System; Agents and Expert Systems. • Fuzzy Sets: Membership Functions, Notion of Fuzziness, Fuzzification and Defuzzification; Operations on Fuzzy Sets. • Artificial Neural Networks (ANN): Unsupervised, Supervised and Reinforcement Learning; Single Perceptron.
Unit-4 Computer System Architecture	<ul style="list-style-type: none"> • Digital Logic Circuits and Components: Digital Computers, Logic Gates, Map Simplifications, Boolean Algebra, Combinational Circuits. • Data Representation: Number Systems and Conversion, Data Types, Complements, Fixed Point Representation. • Register Transfer and Micro operations: Bus, Register Transfer Language and Memory Transfers. • Basic Computer Organization and Design: Stored Program Organization and Computer Registers, Instruction Codes, Computer Instructions. • Programming the Basic Computer: Assembly Language, Machine Language, Assembler.
Unit-5 Statistics	<ul style="list-style-type: none"> • Measure of Central Tendency - Mean, Median, Mode - Dispersion Technique - Range Inter Quartile Range - Variance, Standard Deviation - Mean Square Error & Root Mean Square – Probability Distribution. • Basic Statistics - Frequency table, histogram, measures of location, measures of spread, skewness, curtosis, percentiles, box plot, relative frequency distribution as a statistics model • Correlation And Regression- Covariance, Correlation coefficient, properties of Correlation coefficient, Rank correlation, linear regression (two variables), Multiple correlation and partial correlation.